arXiv:2403.02506v1 [cs.CV] 4 Mar 2024

Differentially Private Representation Learning via
Image Captioning
Tom Sander172’*7 YaodongYu1’3’*, MaziarSanjabil, Alain Durmu527 Yi Ma?’7 Kamalika Chaudhuril, Chuan Guo!

Meta, 2Ecole polytechnique, *UC Berkeley
*Equal contributions

Differentially private (DP) machine learning is considered the gold-standard solution for training a
model from sensitive data while still preserving privacy. However, a major barrier to achieving this
ideal is its sub-optimal privacy-accuracy trade-off, which is particularly visible in DP representation
learning. Specifically, it has been shown that under modest privacy budgets, most models learn
representations that are not significantly better than hand-crafted features. In this work, we show that
effective DP representation learning can be done via image captioning and scaling up to internet-scale
multimodal datasets. Through a series of engineering tricks, we successfully train a DP image captioner
(DP-Cap) on a 233M subset of LAION-2B from scratch using a reasonable amount of computation,
and obtaining unprecedented high-quality image features that can be used in a variety of downstream
vision and vision-language tasks. For example, under a privacy budget of ¢ = 8, a linear classifier
trained on top of learned DP-Cap features attains 65.8% accuracy on ImageNet-1K, considerably
improving the previous SOTA of 56.5%. Our work challenges the prevailing sentiment that high-utility
DP representation learning cannot be achieved by training from scratch.
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1 Introduction

Differentially private (DP; Dwork et al. (2006)) model training is an effective strategy for privacy-preserving
ML on sensitive data. For most optimization-based learning algorithms, DP-SGD (Song et al., 2013; Abadi
et al., 2016) can be readily applied to obtain models with rigorous DP guarantee. Regrettably, DP training
has also been marred by a sub-optimal privacy-utility trade-off, with model utility severely lagging behind
their non-private counterpart (Jayaraman and Evans, 2019; Tramer and Boneh, 2020; Kurakin et al., 2022).
At the core of this unfavorable trade-off is the difficulty of DP representation learning. Tramer and Boneh
(2020) showed that when DP training from scratch under a low-to-moderate privacy budget, most models
learn representations with a quality worse than even handcrafted features. These observations naturally lead
to the research question: “How does one learn useful representations with DP training?”

One plausible reason for the failure of prior attempts at DP representation learning is the lack of training
data. Indeed, DP limits the information content of each training sample via the privacy budget ¢, inducing
a privacy-accuracy-sample size tradeoff; thus a substantially larger training dataset is required to extract
the same amount of information to train the model. As the vast majority of prior work only utilize small
to moderate scale classification datasets such as CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Deng
et al., 2009b), the amount of training data is simply insufficient for learning high-quality representations under
DP (Tramer and Boneh, 2020). Yu et al. (2023) made partial progress towards this through self-supervised
learning (SSL) on internet-scale data. By training a masked autoencoder (MAE; He et al. (2022)) using
DP-SGD on a 233M subset of the LAION-2B dataset (Schuhmann et al., 2022), the model learned image
representations that are on-par with non-private AlexNet (Krizhevsky et al., 2012) trained on ImageNet—the
first deep learning model to outperform handcrafted features and a major cornerstone for representation
learning. However, the MAE objective promotes the model to learn extraneous details in the image that may
not be helpful for obtaining generalizable representations, limiting the potential of this approach for DP.
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(a). Few-shot learning on ImageNet (b). ARO Evaluation

Seagull standing on the beach A brown bear is sitting Cat sitting in toilet Swans swimming in the
on the grass water

(c). Captions generated by DP-Cap

Figure1 (a) Few-shot ImageNet-1K linear probe accuracy comparison between DP-Cap (ours) and ViP (Yu et al.,
2023) (previous SOTA). DP-Cap learns better image representations using the same training data and privacy budget,
and considerably surpasses synthetic initialization (syn). (b) Compositional understanding evaluation on the ARO
benchmark (Yuksekgonul et al., 2022). DP-Cap performance is close to non-private Cap and outperforms non-private
CLIP. (c) Captions generated by DP-Cap on images from the MS-COCO 2017 (Lin et al., 2015) test set.

We adopt a different approach of DP training via image captioning on internet-scale multimodal datasets.
The reason is twofold: 1. Text caption provides a concise summary of the training image and serves as better
supervision compared to image-only SSL (Tschannen et al., 2023). Under the constraint on information content
from DP, we hypothesize that it provides substantially more efficient information extraction under DP training.
2. Image captioning is well-aligned with the prerequisites of DP-SGD such as having an instance-separable loss.
We apply this method on a 233M subset of LAION-2B to train a DP image captioning model (DP-Cap), whose
learned representations surpass previous SOTA—ViP (Yu et al., 2023)—by a large margin. As depicted in
Figure 1(a), our model trained with a privacy budget of ¢ = 8 shows substantial improvements on downstream
tasks compared to ViP, both trained on the same dataset. To achieve this, we also made crucial improvements
to the efficiency of the DP training pipeline, reducing the compute cost by close to 5x on the largest model.

The image representations learned by DP-Cap also exhibit strong performance for multimodal tasks that
require alignment of image and text features, the first occurrence for models trained from scratch with DP;
see Figure 1(b). As a qualitative evaluation, we also use the trained DP-Cap model to caption several images
from the MS-COCO 2017 (Lin et al., 2015) test set in Figure 1(c) and Appendix B.3. The resulting captions
are grammatically correct and semantically coherent, while (close to) accurately describing contents of the
image; this is interesting because our model has only been exposed to language supervision from LAION,
which are far from being flawless. Our results suggest that DP training on internet-scale multimodal datasets
can be a viable approach for obtaining high-utility learned representations.

2 Background and Related Work

Vision-language pre-training. Many modern ML datasets such as Conceptual Captions (Changpinyo et al.,
2021), LAION (Schuhmann et al., 2021) and DataComp (Gadre et al., 2023) consist of aligned image-text
pairs where the image and text contain roughly similar semantic information. One can leverage the aligned
nature of the training data to pre-train vision-language models (VLMs) that connect the two modalities,
whose representations perform more general multi-modal tasks. Contrastive learning-based techniques such as



CLIP (Radford et al., 2021) and BLIP (Li et al., 2022) are also applicable for pre-training VLMs. Doing so
not only learns high-quality image and text representations but also introduces new multi-modal capabilities
such as cross-modal retrieval and zero-shot prediction (Radford et al., 2021). Recent work by Tschannen et al.
(2023) shows an image captioning approach (predicting text captions from images) is a viable alternative to
contrastive learning and can lead to models with robust performance.

Differential privacy (Dwork et al., 2006). In the following, we denote by M a randomized learning algorithm,
which takes a dataset D containing IV samples and produces a machine learning model @ through the process
M(D). A randomized mechanism M is (g,0)-DP if, for any two adjacent datasets D and D’ differing by a
single sample, and for any subset O C Im(M):

P[M(D) € 0] < P[M(D') € O] exp(e) + 6. (1)

We adopt the leave-one-out notion of adjacency in this work, i.e., D = D’ U {x} for some sample x or vice
versa. DP bounds the extent to which any potential adversary can infer information about the dataset D after
observing the algorithm’s output. In the context of ML, this implies that if we obtain the model 8 through a
DP training algorithm M then its training data is provably difficult to recover or infer (Balle et al., 2022;
Guo et al., 2022, 2023).

DP-SGD (Song et al., 2013; Abadi et al., 2016) is predominant differentially private algorithm for training
deep neural networks (DNNs). At each gradient step k, a batch By, is sampled where each example from the
training data is chosen randomly with probability ¢ = B/N, where B represents the average batch size. For
C > 0, define the clipping function for any X € R by clipo(X) = C- X/|| X || if | X]|| > C and clipo(X) = X
otherwise. Given model parameters 8y, DP-SGD defines the update 011 = 0 — 1,8, where 7, is the step
size and gy, is given by:

g = = | 3 clipe (Voli(81) + N (0,C%0°T) || ()

B
1€By,

where £;(0) is the per-sample loss function evaluated at sample x;. We also use the term “DP-SGD” loosely
to refer to the category of gradient-based optimization algorithms that operate on the noisy gradient, e.g.,
Adam (Kingma and Ba, 2014). The privacy analysis of DP-SGD relies on composition of multiple steps. One
particularly powerful analysis framework amenable to such compositions relies on a variant of DP called Rényi
differential privacy (RDP) (Mironov, 2017). An advantage of RDP is its additive composition property, where
the privacy guarantees of a sequence of mechanisms can be combined with amplification by subsampling (Wang
et al., 2019) and then translated to (,d)-DP (Balle et al., 2020; Gopi et al., 2021). In this work, we adopt
this accounting technique.

Scaling up DP-SGD training. DP training is a theoretically and empirically proven remedy against unintended
training data memorization. Even models with large € (e.g., € = 100) can empirically defend against privacy
attacks (Carlini et al., 2021; Guo et al., 2023). Despite its great appeal, DP training also carries a significant
drawback of large drop in model utility (Abadi et al., 2016; Tramer and Boneh, 2020). For example, the
SOTA performance on ImageNet when training from scratch with a DP guarantee of ¢ = 8 is 39.2% (Sander
et al., 2023); in comparison, the non-private performance on ImageNet when training from scratch can reach
88% (Touvron et al., 2022) or higher. This degradation in model utility also translates to poorly learned
representations, as Tramer and Boneh (2020) showed that even handcrafted features can rival ones learned
through DP training.

Yu et al. (2023) made the first step towards obtaining high-utility learned representations through scaling
DP training. They proposed self-supervised learning (SSL) on internet-scale data as a solution for the
privacy-utility trade-off in DP representation learning. Among the numerous SSL algorithms, the authors
observed that the reconstruction-based approach of masked autoencoder (MAE; He et al. (2022)) is compatible
with the requirements of DP-SGD. By leveraging weight initialization through synthetic pre-training, the
authors were able to obtain high-utility learned representations at a strict privacy budget of ¢ = 8. Compared
to ViP (Yu et al., 2023), we demonstrate that the image captioning approach (see Section 3.1) learns much
better image representations by utilizing the additional text supervision.



3 Approach

We describe in detail our approach of DP representation learning via image captioning. We first argue why
image captioning is intuitively a suitable objective for obtaining better image representations via DP-SGD
training (section 3.1). Then, we elucidate the technical challenges that we resolved to make DP training viable
and effective for image captioning (section 3.2).

3.1 DP Representation Learning via Image Captioning

Why is vision-language pre-training suitable? Given image-text aligned datasets, prior works (Radford et al., 2021;
Li et al., 2022; Tschannen et al., 2023) showed that pre-training using language supervision is an appealing
option for non-private representation learning. We hypothesize that this is true for DP representation learning
as well. Compared to image-only supervision, language supervision contains a more condensed summary of
the image content, allowing the model to ignore irrelevant details such as background and focus on objects of
interest and their relationships. This is especially helpful for DP since the model needs to extract as much
useful information as possible from each sample given the privacy budget . Captioning could thus enhance
the privacy-utility-sample size trade-off in DP, considering it requires less information per sample.

In addition, we show that vision-language pre-training supports a very large batch size, much larger than
what is typically used in image-only pre-training (Radford et al., 2021; Li et al., 2022; Yu et al., 2022). This
subtle aspect is in fact crucial for reducing the effective noise in DP-SGD (Li et al., 2021), which allows the
model parameters to converge to a stable solution with lower training loss (see Section 3.2).

Vision-language pre-training via image captioning. Perhaps the most popular approach for vision-language
pre-training is contrastive language image pre-training (CLIP; Radford et al. (2021)) as well as its variants (Mu
et al., 2022; Li et al., 2023). However, the contrastive loss used in these methods is not an additive function
over the samples, i.e., it cannot be written in the form ), ¢;, where ¢; depends only on the i-th sample. Thus,
DP-SGD (c¢f. equation 2) cannot be directly applied.

Uunlike contrastive learning, the image captioning approach (Sariyildiz et al., 2020; Desai and Johnson, 2021;
Tschannen et al., 2023) aligns well with DP-SGD training. Specifically, an image captioner is trained to
predict captions based on their corresponding images. The training objective of the image captioner for one
image-text pair [x™8, z'**!] is to minimize over @ := {@enc, Ogec } the following loss:

T-1
im, texty. R text img, text text .
LCap([X 8,2 0) = T § leg (2t+1780( P(X"E; Oene) 2175, 2 70dec))7 (3)
=0 image embedding first ¢ tokens
where z'*** denotes the caption token sequence {z{**, ..., z5**} and the image captioner consists of two parts:

the image encoder ¥(+; Oenc) and the text decoder ¢(-; Ogec). The rationale behind the design of equation 3 is
that the image encoder maps the input image x'™# to an embedding vector, and the text decoder takes the

image embedding ¥ (x™8; @gnc) and the first ¢ caption tokens {2{¢** ... 2f*t} as inputs and predicts the next

caption token z;$%". Both the encoder and decoder are trained to maximize the log-likelihood of the correct
next token. Equation 3 corresponds to the loss function for an image-text pair [x™&, z'**']; summing over all
the samples in a batch gives the complete empirical loss in an additive form, which is directly compatible

with DP-SGD. We discuss the sense of the privacy guarantees in Appendix A.1.

3.2 Strategy for Effective DP Training

Although image captioning has demonstrated impressive representation learning capabilities in the non-private
regime, adapting it to DP training requires careful considerations. To obtain a useful pre-trained model, one
needs to train for a sufficient number of steps under a low effective noise, both of which are at odds with
obtaining a strong privacy guarantee. We detail the strategy we used to handle this trade-off when training
the image captioner.

Sufficient number of training steps. We address this challenge via synthetic pre-training. We first observe that
image representations learned by DP-Cap (random init) outperform those of ViP (random init) as evidenced
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Figure 2 Impact of synthetic initialization on the DP-Cap model. The learned image representation benefits substantially
from initializing on the Shaders21k dataset. The accuracy gap between DP-Cap (random init) and DP-Cap (syn init)
can be as large as 24% for ImageNet linear probing.

in table 9 in App. B. Interestingly, Yu et al. (2023) have shown that synthetic images consisting of only
textures can provide a better initialization for their reconstruction-based model without any privacy risk.
With this initialization, the model can focus on learning dataset-specific properties rather than low-level
image properties such as edge detectors, therefore expending privacy budget in a more optimal manner. We
adapt this technique of pre-training on the Shaders21k dataset (Baradad et al., 2022) for initialization (see
Appendix A.1 for details) and observe that it is even more effective with DP-Cap compared to ViP. As shown
in Fig. 2, our DP-Cap (syn init) improves over DP-Cap (random init) by more than 24% on ImageNet-1k linear
probing. It also improves over synthetic initialization alone (Syn-init) by more than 14% on ImageNet-1k
linear probing, whereas the gain in ViP is smaller than 6%.

Using extreme batch sizes to reduce effective noise. Li et al. (2021) first showed that increasing the batch size in
DP-SGD often improves the privacy-utility trade-off. This is because the effective noise added to the average
gradient has magnitude /B (¢f. equation 2), and that increasing B, rather than decreasing o, results in
better privacy guarantees according to conventional accounting techniques (Bun and Steinke, 2016; Dwork and
Rothblum, 2016; Mironov et al., 2019; Sander et al., 2023). However, under supervised learning, increasing the
batch size beyond a certain limit can lead to training instability under both private and non-private training.
Specifically, Sander et al. (2023, 2024) observed that when training a classifier from scratch with DP-SGD on
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Figure 3 (a) We fix the effective noise o/B = 5.6 x 1077 (corresponding to our (B, o) = (1.3M, 0.728)) and show
that the loss is remarkably consistent across different batch sizes, allowing us to effectively scale up batch size to
improve the SNR. (b) Performance from 4 sets of parameters that provide ¢ = 8, with constant number of steps 5708.
From batch size 98k (used in ViP (Yu et al., 2023)), to our 1.3M batch size. In contrast to ViP, DP-Cap successfully
leverages the better SNR and learns features that achieve substantially better 10-shot accuracy on ImageNet even
compared to a non-private MAE (He et al., 2022) trained on the same dataset (see Appendix A.1).
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ImageNet, at a fixed number of steps S and fixed effective noise o /B, the performance decreases significantly
when the batch size becomes too large: for B € [128,16384], a drop of 10% in top-1 accuracy was observed.

Intriguingly, we find that vision-language pre-training on internet-scale datasets can tolerate extreme batch
sizes, e.g. B = 1M. In Figure 3(a), we compare the loss behaviors when scaling the batch size for DP-Cap.
We fix the effective noise /B while varying the batch size. In stark contrast to the previous observation from
Sander et al. (2023), the loss trajectory is identical across different batch sizes. With this observation, we are
able to successfully scale up the batch size for DP-Cap to as large as B = 1.3M, achieving an effective noise
of 5.6 x 1077, almost 10 times smaller than the effective noise of ViP in Yu et al. (2023). Training DP-Cap
under such a small effective noise allows it to extract information from the training dataset more efficiently
under the DP constraint. In Figure 3, we show that with B = 1.3M, the representation learned by DP-Cap
even outperforms non-private MAE trained on the same dataset.

Improving training pipeline efficiency. DP training is known to be computationally inefficient due to factors such
as per-sample gradient computation (Lee and Kifer, 2020; Li et al., 2021). Training on internet-scale datasets
using extreme batch sizes further complicates this issue. For example, a naive implementation of DP-Cap
with per-sample gradient computation using functorch would take approximately 61 days(!) on 128 NVIDIA
V100 GPUs. We made significant efficiency improvements to the training pipeline using two techniques: ghost
norm (Li et al., 2021) and the automatic mixed precision (AMP) package in PyTorch. Combining these two
techniques with DP-SGD requires careful considerations to ensure both a correct DP guarantee as well as
numerical stability. We detail the implementation of these two techniques in Appendix A.2.

In Figure 4 we compare the compute cost of different gradient computation methods: functorch, ghost
norm and ghost norm+AMP. The number of GPU hours is estimated on a single NVIDIA V100 GPU with
32GB memory using 100K samples. The improvement is especially notable for our largest model: Using
ghost norm-+AMP, we achieve a 4.7x speedup compared to functorch and 3.3x speedup compared to ghost
norm alone, which amounts to a reduction from 61 days to 13 days when training for 32 epochs—a large
but manageable compute cost. This improvement is due to both a more efficient forward-backward pass,
as well as enabling a larger physical batch size; see Table 1. In addition, we adopt the TAN simulation
framework (Sander et al., 2023) to reduce the compute cost during hyperparameter search. Due to the batch
size scaling behavior depicted in Figure 3, TAN simulation is ideal for DP-Cap training and allows for rapid
experimentation to identify promising methods before launching a full training run.

4 Evaluation

We demonstrate the representation learning capabilities of DP-Cap on both vision (V) and vision-language
(v-L) downstream tasks. For all evaluations, the DP-Cap model is first pre-trained using DP-SGD on a subset
of LATON-2B (Schuhmann et al., 2022), and then fine-tuned non-privately on a downstream dataset.



Table 2 Linear probing evaluation on downstream classification. Results for DP-NFNet, TAN, AlexNet and SimCLR
are obtained from Yu et al. (2023). For ViP (Yu et al., 2023), we train with the same privacy parameters as for DP-Cap
on the deduplicated dataset. More details are given in Appendix A.1.

Model pretraining data ‘ ImageNet-1K Places-365 Places-205 iNat-2021
DP-NFNet  ImageNet-1K v \ 45.3% 40.1% 39.2% 28.2%
TAN ImageNet-1K o 49.0% 40.5% 38.2% 31.7%
AlexNet ImageNet-1K X ‘ 56.5% 39.8% 35.1% 23.7%
SimCLR  ImageNet-1K X | 67.5% 46.8% 49.3% 34.8%
Cap Dedup-LAION-233M X | 77.5% 56.3% 63.9% 63.9%
ViP Dedup-LAION-233M v/ | 56.5% 47.7% 49.6% 38.2%
DP-Cap Dedup-LAION-233M v | 63.4% 51.9% 54.3% 44.5%

Table 3 Performance of DP-Cap on zero-shot classification and compositional understanding (ARO). CLIP’s zero-shot
results are obtained from Radford et al. (2021) (base model). For ARO, see Appendix A.3.2.

Model Zero-shot ARO

ImageNet-1k  CIFAR10 CIFAR100 | VGR  VGA  COCO  Flickr
Random Chance - 0.1% 10% 1% | 50% 50% 20% 20%
CLIP X 62.2% 91.3% 65.1% 62.4% 62.9%  47.8%  58.0%
Cap X 25.2% 90.0% 37.4% | 59.9% 87.2% 87.0%  87.4%
DP-Cap oI 8% 54.4% 16.4% | 58.6% 82.4%  86.6%  87.2%

41 Downstream Tasks

Linear probing (V). We train a linear classifier on top of learned representations and evaluate its accuracy.
We consider both full linear probing using the full downstream dataset, as well as few-shot linear probing,
which subsamples the downstream dataset down to K samples per class. Few-shot linear probing is especially
useful for evaluating learned representations since the model must rely heavily on the generalizability of
representations in order to perform well under data scarcity.

Zero-shot image classification (V-L) is one of the most widely used methodologies for evaluating vision-language
models (Radford et al., 2021). A strong zero-shot performance suggests that the image representation aligns
well to text. We perform zero-shot classification using the DP-Cap image encoder and text decoder by
evaluating the likelihood of captions of the form “this is a photo of a [label]”. We enumerate over different
labels and predict the class that has the highest likelihood; see Section A.3.1 for full details.

ARO (Attribution, Relation, and Order) (v-L). The ARO benchmark (Yuksekgonul et al., 2022) can be used to
gauge the adeptness of VLMs in understanding the compositional relationship between objects and attributes.
A strong performance on ARO suggests that the learned image representation encodes semantic relationships
such as “the horse is eating the grass” vs. “the grass is eating the horse”.

4.2 Experimental Setup
We present an overview of the experimental setup; refer to Appendix A for additional details.

Datasets. Following the approach introduced by Yu et al. (2023), we first pre-train on the Shader21k
dataset (Baradad et al., 2022) of synthetic images. We then train with DP-SGD on a subset comprising
233 million deduplicated (using SemDeDup (Abbas et al., 2023)), NSFW-filtered and face-blurred (using an
approach similar to Yang et al. (2021)) image-caption pairs from the (English-only) LAION-2B dataset (Schuh-
mann et al., 2022). We refer to this dataset as Dedup-LAION-233M.

We use the ImageNet-1K (Deng et al., 2009a; Russakovsky et al., 2014), CIFAR-10/100 (Krizhevsky et al.,



Table 4 Ablation studies on the effect of dataset size and privacy budget € on DP-Cap (base).

€ o # Data  # Steps B | ImageNet-1K ARO (V-L)

| O-shot (V-L) 1-shot (V)  2-shot (V) 10-shot (V) VGR VGA  COCO  Flickr

+oo 0 233M 60,000 10,960 ‘ 25.2% 27.0% 37.2% 57.9% ‘ 59.9% 87.2% 87.0% 87.4%

8.0 0.728 233M 5708 1.3M ‘ 7.8% 10.3% 15.6% 31.8% 58.6% 82.4% 86.6% 87.2%
2.0 1.18 233M 2854 1.3M ‘ 3.2% 7.0% 10.8% 23.9% 58.5% 79.7%  85.3% 86.6%
1.0 1.5 233M 1427 1.3M ‘ 1.1% 5.2% 8.2% 19.9% ‘ 58.3% 75.6% 83.9%  85.3%
8.0 0.728 23M 5708 130K ‘ 0.7% 3.4% 5.3% 13.3% ‘ 58.3%  76.2%  84.9%  85.9%
8.0 0.728 2.3M 5708 13K ‘ 0.1% 1.8% 2.9% 8.1% ‘ 57.6% 66.4% 79.5%  82.0%

2009), Places-365/205 (Zhou et al., 2014) and iNaturalist-2021 (Van Horn et al., 2021) image classification
datasets to assess the performance of learned image representations via full linear probing, few-shot linear
probing, and zero-shot prediction. For vision-language tasks, we employ the Visual Genome Attribution
(VGA), Visual Genome Relation (VGR), COCO-order (Lin et al., 2015) and Flickr-30k (Plummer et al., 2016)
datasets from the ARO benchmark (Yuksekgonul et al., 2022). Finally, we evaluate image captioning using
the MS-COCO 2017 (Lin et al., 2015) test set; result is shown in Figure 1(c) and Appendix B.3.

Model and training. We use a transformer architecture (Vaswani et al., 2017) for both the encoder and the
decoder of DP-Cap, where the decoder applies causal cross-attention; see Section A.1 and Tschannen et al.
(2023) for details. For privacy accounting we use Rényi DP composition along with privacy amplification
via Poisson subsampling (Mironov et al., 2019), and convert to DP using Balle et al. (2020) through the
PyTorch-based Opacus library (Yousefpour et al., 2021), targeting 6 = 1/N where N represents the number of
training samples. We refer to the non-private counterpart of DP-Cap trained on the same Dedup-LAION-233M
dataset as “Cap”.

4.3 Main Results

Linear probing evaluation (V). We assess the performance of the vision encoder on downstream tasks via linear
probing. In Fig 1(a), we compare the performance of DP-Cap and ViP (Yu et al., 2023) on ImageNet-1k
few-shot linear probing. DP-Cap significantly improves over ViP, with up to x2.5 better performance across
different shots. In addition, we evaluate the full linear probing accuracy of DP-Cap, ViP and other baselines
in Table 2. DP-Cap outperforms ViP and other DP models, including TAN (Sander et al., 2023) and DP-
NFNet (De et al., 2022), across all tasks. DP-Cap even outperforms non-private AlexNet (Krizhevsky et al.,
2012) and except on ImageNet, SimCLR (Chen et al., 2020) (both were trained on ImageNet). We provide
additional results for fine-tuning on downstream datasets in Table 10 (App. B), also showing improvements
over competing methods.

Zero-shot performance (V-L). In the left three columns of Table 3, we evaluate the zero-shot performance of
DP-Cap compared to non-private Cap and CLIP/BLIP on ImageNet-1k and CIFAR10/100. Contrastive
methods such as CLIP and BLIP have demonstrated greater suitability for zero-shot prediction compared
to image captioning approaches (Tschannen et al., 2023), which is evident by the disparity between the
performance of Cap and CLIP/BLIP. Nevertheless, we observe that DP-Cap achieves noteworthy zero-shot
classification performance that is significantly above random chance, and stands as the first DP model to do
so. This accomplishment marks a promising milestone for DP training, although there remains a substantial
performance gap between DP-Cap and Cap.

Attribution, Relation, and Order (ARO) evaluation (V-L). Contrastive-based methods such as CLIP often exhibit
behavior akin to bag-of-words models (Yuksekgonul et al., 2022; Tejankar et al., 2021; Basu et al., 2023),
making them less adept at performing well on the ARO benchmark. Remarkably, DP-Cap significantly
outperforms non-private CLIP in this context (see Fig 1(b) and Table 3), and even achieves performance
close to that of non-private Cap. Our result shows that DP training can be particularly effective for learning
complex compositional relationships.



Table 5 Ablation studies on the effect of model size. We compare ViP and DP-Cap’s number of encoder parameters.
More details about the DP-Cap models can be found in Table 6.

Model Config ~ # parameters | ImageNet-1K (Vision) ARO (Vision-Language)

‘ 1-shot  2-shot  5-shot  10-shot LP VGR VGA COCO  Flickr

ViP Base 86.6M | 25%  4.2%  85%  14.3%  56.5% / / / /
DP-Cap Small 49.0M | 9.0%  14.0% 21.6%  28.9% 61.1% | 59.1% 80.5%  86.0%  86.6%

58.6% 82.4%  86.6%  87.2%
59.5% 80.1%  86.6%  86.5%

DP-Cap Base 86.6M ‘ 10.3% 15.6%  24.2% 31.8% 63.4%
DP-Cap Large 407.3M | 11.8% 175% 262%  34.0%  65.8%

\
|
\
DP-Cap Tiny 22.0M | 7.9% 121% 18.7%  252%  57.5% | 58.6% 79.1%  85.7%  87.1%
\
\
|

4.4 Ablation Studies

We perform ablation studies on the scaling behavior of DP-Cap with respect to the dataset size, privacy
budget and model size. In Appendix B, we show additional results on image captioning and on the impact of
compute budget.

Scaling dataset size. We show that dataset scaling is crucial for effectively training DP-Cap as it results in
better SNR under the same privacy budget (see Figure 5). We randomly subsample 1% and 10% of the
Dedup-LAION-233M dataset, which is used for training our default DP-Cap-Base model in Table 2 (denoted
by Dedup-LAION-2M and Dedup-LAION-23M). We set the batch size to B/100 for Dedup-LAION-2M and
B/10 for Dedup-LAION-23M, respectively. This allows the model to be trained for the same number of steps
across the different datasets, although at a much larger effective noise level. As shown in Table 4, the number
of training samples is critical for achieving strong performance for DP-Cap models: the zero-shot performance
of our model trained on 1% of the dataset achieves random zero-shot performance on ImageNet and much
worse accuracy across the board on ARO.

Impact of the privacy budget c. We also investigate the performance of DP-Cap under lower privacy budgets
(¢ = 1 and ¢ = 2), employing the same batch size of 1.3 million. The outcomes of these experiments
are presented in Table 4. As anticipated, the utility of our model does exhibit a decline with decreasing
€. However, the performance degradation is relatively minor for the learned representation, with 10-shot
ImageNet performance decreasing from 31.8% (¢ = 8) to 19.9% (¢ = 1). More surprisingly, the performance
impact on ARO is nearly negligible. It is noteworthy that both models continue to outperform previous
state-of-the-art DP models trained with € = 8 (see Figure 1). This phenomenon can be attributed to the
relatively small effective noise resulting from the extreme batch size, which for € = 1 remains five times smaller
than that used in Yu et al. (2023).

Scaling model size. Scaling up the model size is one of the most effective approaches for training better
non-private foundation models (Brown et al., 2020; Bommasani et al., 2021; Touvron et al., 2023). However,
conventional wisdom suggests that scaling up model size does not improve utility in DP training since more
model parameters will lead to lower signal-to-noise ratio'. To test this hypothesis, we train DP-Cap with
different model sizes (Tiny, Small, Base, Large) using the same hyperparameters and evaluate their performance
in Table 5,11; see Table 6 for details about different model sizes. We observe consistent improvements when
scaling up the model from DP-Cap-Tiny to DP-Cap-Large. Our observation suggests that DP-Cap has strong
model scaling behavior even with DP-SGD training.

5 Discussion and Future Work

We demonstrated that DP representation learning via image captioning is viable. In particular, image
captioning is an ideal objective that supports both per-sample loss and large batch training—two critical
ingredients in DP-SGD. When applied to the Dedup-LAION-233M dataset, the trained model learns useful
image representations for downstream tasks and exhibits strong multi-modal capabilities.

IThis is because the added noise has Lo norm =~ UC\/&/B, where d is the number of model parameters, whereas the gradient
norm is constrained to C regardless of model size.



Through our study we also identify three open problems in the general direction of DP pre-training of
large-scale foundation models that are difficult to handle with existing techniques: 1. While we made notable
efficiency improvements to support extreme batch sizes, it remains computationally demanding compared to
non-private training. Is it possible to do DP training without the use of extreme batch sizes? 2. Are there
more parameter-efficient architectures that provide a better privacy-utility trade-off under data scaling? 3.
Contrastive learning remains state-of-the-art for learning features for downstream tasks such as retrieval.
What techniques can enable effective DP contrastive learning?
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Appendix

A Implementation Details

Table 6 Details of transformer backbone variants used in DP-Cap.

Model ‘ Encoder depth  Encoder width  Decoder depth ~ Decoder width ‘ # parameters (encoder & decoder)
DP-Cap-Tiny | 12 384 6 384 \ 59M
DP-Cap-Small | 12 576 6 576 | 115M
DP-Cap-Base | 12 768 6 768 | 190M
DP-Cap-Large | 24 1024 6 768 | 407M

A.1 Training Details

DP accounting. We use RDP accounting with subsampling from the Opacus library (Yousefpour et al., 2021).
Let D, denote the Rényi divergence of order o (Rényi, 1961), and let

9a(,9) = Da((1 = IN(0,0%) + q N (1,0%) | N'(0,07)). (4)
Then, from Mironov et al. (2019), performing S steps of DP-SGD satisfies (¢, d)-DP with:

log(1/6
£ = min{g.ga(g’q)JrM}. (5)
« a—1
The quantity g, (o, ¢) can be upper bounded mathematically or derived numerically: we use the Opacus (Yousef-
pour et al., 2021) library for accounting in our work.

Regarding the DP guarantee, e-DP bounds the amount of information extracted from each training sample
by €. Notably, for DP-Cap, each sample is made of {image + caption}, while ViP (Yu et al., 2023) utilizes
{image} only. Consequently, DP-Cap inherently offers an equivalent or better privacy guarantee for each
image. One way to see it is to note that DP provides protection against membership inference attacks (Shokri
et al., 2017). Suppose e-DP upper bounds the success rate of a membership inference attack (when given the
image-text pair) against DP-Cap as < p. Then the MIA success rate when given only the image can be at
most p since the attacker has strictly less information. This is exactly the upper bound for the success rate of
a membership inference attack against ViP. In other words, any attacker that can attack the image+caption
model (such as DP-Cap) can also attack the image-only model (such as ViP).

On the other hand, since the {image-+caption} models utilize the caption, the privacy leakage from the text
part of the image-caption pair is non-zero for £ > 0. It is worth noting that in our set up since we use DP,
we protect the captions with the same e-DP guarantee. Thus, the privacy protection for DP-Cap is neither
strictly stronger nor strictly weaker than that for ViP, so the two privacy notions are not directly comparable.

Model details and task description. We utilize a transformer architecture (Vaswani et al., 2017) DP-Cap. This
captioning model uses a text decoder that generates captions in an auto-regressive manner, utilizing a full
attention mechanism on the vision encoder’s output, as well as causal attention on the text. This architecture
is closely aligned with the Cap architecture introduced in Tschannen et al. (2023). See Table 6 for details
about the transformer architecture for different sizes. All results utilize the base model with the exception of
the comparison in Table 6.

Hyperparameters. Our choice of gradient clipping factor is C = 1, as we did not observe any performance
improvement with other values. We always use AdamW (Loshchilov and Hutter, 2018) for training. We use a
learning rate of 5.12 x 10~%. The learning rate is kept constant across batch sizes for TAN simulations and
for the performance comparison in Figure 3 as the effective noise is kept constant in these cases (Sander et al.,
2023). We use a maximum length of 40 tokens to process the LAION captions. We use a linear schedule, with
40% of warm-up iterations, and 2x the entire training as decay horizon. As opposed to what was previously
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observed (De et al., 2022; Sander et al., 2023), the learning rate schedule played an important role for us with
DP-SGD training. We use a weight decay of 0.05. These choices come from hyperparameter search using
TAN simulation with our base model. Following the standard practice (Berrada et al., 2023; De et al., 2022;
Li et al., 2021; Yu et al., 2023; Sander et al., 2023), we do not count hyperparameter search within our privacy
budget. Liu and Talwar (2019) have shown that hyperparameter search might not incur observable privacy
loss.

Pre-training DP-Cap on the synthetic dataset. Compared to the encoder and decoder architecture design used
in masked autoencoders (MAE) (He et al., 2022), the two main differences of the image captioning model
used in this paper are: (1) The output of the encoder is fed into the decoder via cross-attention (Vaswani
et al., 2017) in Cap; and (2) The self-attention used in the Cap decoder is causal self-attention. Similar
to Yu et al. (2023), we apply the synthetic image dataset, Shaders21k (Baradad et al., 2022), to pre-train
the DP-Cap model via MAE-based training. We follow most of the training setups used in ViP synthetic
pre-training (Yu et al., 2023), except that we feed the output of the encoder to the decoder via cross-attention.
The training loss of the synthetic pre-training in this paper is still the reconstruction loss used in MAE (He
et al., 2022), and we did not leverage real-world text data for pre-training. After the model is pre-trained
on Shaders21k, we change the self-attention to causal self-attention in the decoder, and replace the final
layer (for pixel-wise reconstruction) of the decoder with the (randomly initialized) decoding layer for next
word prediction. After making these modifications, we apply DP-SGD to pre-train our DP-Cap model with
standard image captioning training objectives (see Section 3.1).

Pre-training ViP. To conduct a comparison with training on an identical datasets, we follow the methodology
outlined in (Yu et al., 2023) to train with DP-SGD a MAE-based model, but with a change in the training
data from LAION-233M to Dedup-LAION-223M, and use the same encoder’s synthetic initialization as for
DP-Cap. We further examine the linear probing performance on ImageNet and observe a 2% between the
original model and the one trained on the deduplicated dataset. In addition, to corroborate the observation
made in Figure 3, which suggests that the MAE-based method struggles to effectively harness massive batch
sizes for achieving low effective noise in DP-SGD, we also train ViP models with larger batches, up to using
the exact privacy parameters employed for DP-Cap (under € = 8) with a notably large batch size of 1.3
million, and showcase the results in Table 7. For full linear probing, we observe only a small improvement over
the original ViP model that was trained with batch size 98k. The success of DP-Cap is not solely attributed
to its appropriate privacy parameters but is also a consequence of its remarkable ability to leverage the small
effective noised induced by extremely large batch sizes.

A.2 Computation cost

Mixed Precision Package & Ghost Norm. DP-SGD introduces additional computational overhead compared to
non-private training, primarily due to the computation of per-sample gradient norms. By employing the ghost
norm technique of Li et al. (2021), we have successfully reduced the computational cost by up to one third
with the Large Model (see Figure 4) compared to using functorch. The torch.amp package offers convenient
methods for mixed precision, significantly speeding up operations like linear layers. However, it often leads to
NaNs due to low precision handling of extreme values. While one can skip a step that led to NaNs in normal
training, combining AMP with Ghost Norm is more complex. Ghost Norm requires two backward passes.
In the first pass, per-sample gradient norms are computed. If one gradient norm is NaN, it contaminates
the entire batch, leading to a NaN in the second backward pass. This issue is particularly prevalent in our
setting with a batch size of 1.3M, as even a minuscule proportion of computations leading to NaNs can cause
problems. To address this, we propose two solutions:

e Loss Scaler: We employ a similar trick to the standard use of AMP to reduce the number of NaNs. This
involves dynamically upscaling and downscaling the loss with torch.cuda.amp.GradScaler. The same
factor is used before the first and the second backward, and is updated based on the outputs of the
second backward only.

e Clipping to 0: If any per-sample gradient norm computation results in a NaN value after the first
backward, we set its clipping coefficient (the multiplicative coefficient in front of the corresponding
per-sample loss for the second backward, as detailed in Li et al. (2021)) to 0 for the second backward.
In this case, we do not update the loss scaling factor.
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Table 7 Set-ups for our training for ViP, MAE (He et al., 2022) and DP-Cap: ImageNet-1k linear probing.

ImageNet-1K

Model pretraining data (B, o, 5) 1-shot  2-shot  5-shot  10-shot full

ViP (Yu et al., 2023) LAION-233M (98k, 0.48, 6000) | 2.5%  4.1%  85%  14.2%  55.7%
ViP Dedup-LAION-233M (98k, 0.474, 5708) ‘ 2.3% 3.9% 8.0% 13.6% 53.4%
ViP Dedup-LAION-233M  (200k, 0.513, 5708) | 2.5%  4.1%  83%  14.1%  54.0%
ViP Dedup-LAION-233M  (400k, 0.564, 5708) ‘ 2.5% 4.2% 8.7% 14.7% 55.2%
ViP Dedup-LAION-233M  (1.3M, 0.728, 5708) ‘ 2.7% 4.6% 9.4% 15.7% 56.5%
MAE (Non private) Dedup-LAION-233M (40960, 0, 40000) ‘ 3.4% 5.8% 11.8% 19.5% 62.5%
DP-Cap Dedup-LAION-233M (98k, 0.474, 5708) ‘ 4.2% 6.9% 11.4% 17.2% 50.6%
DP-Cap Dedup-LAION-233M  (200k, 0.513, 5708) ‘ 5.6% 8.9% 14.5% 20.2% 54.2%
DP-Cap Dedup-LAION-233M  (400k, 0.564, 5708) | 7.6%  11.5% 18.5%  25.3%  59.1%
DP-Cap Dedup-LAION-233M  (1.3M, 0.728, 5708) ‘ 10.3% 15.6%  24.2% 31.8% 63.4%

It’s worth noting that the second solution is entirely valid for DP: instead of clipping the per-sample gradient to
anorm C it clips it to 0 in cases where computation results in a NaN value. This approach effectively mitigates
the issue of NaN contamination in large batches. Overall, We have successfully reduced the computational
cost by a factor 5 for the Large Model compared to functorch.

TAN simulation. Crucially, to achieve a favorable privacy-utility trade-off, DP-SGD necessitates training with
massive batches over a substantial number of steps to achieve a good privacy-utility trade-off, as elaborated
in Section 3.2. All our hyperparameter search were performed using the TAN simulation (Sander et al., 2023)
for one epoch on our Dedup-LAION-233M. For our € = 8 models, we limited training to 32 epochs, a process
that took 5 days utilizing 128 V100 GPUs for the Base model.

While we have tried to reduced it as much as possible, training DP-Cap imposed a considerable energy
consumption, resulting in elevated CO2 emissions. Our intention in releasing these models is to contribute to
the mitigation of future carbon emissions, as the training has already been completed.

A.3 Evaluation Details

A.3.1 Details about Zero-shot Image Classification

While methods employing contrastive learning, such as CLIP, excel in this task, captioning methods exhibit
comparatively lower performance, and with greater computational demands during evaluation. To evaluate a
captioning model’s zero-shot performance, we employ two distinct strategies:

e Tree-based search: We initiate caption generation with a prompt like “this is a photo of a " and greedily

select the most likely next token among those that lead to valid completions within the true label set. The
process continues until an End of Sentence (EOS) token is reached. For instance, if there are only two
labels starting with “car": “car [EOS|" and “carpet [EOS]", and the initial predicted token is “car". Then
the text decoder will predict the next token among “[EOS]" and “pet". If, among these two, “[EOS]|" is
chosen, and “car [EOS]" corresponds to the true label, then the zero-shot prediction is deemed correct.

e Loss-based classification: We assess, for each image, the probability of various captions that begin with
“this is a photo of a [...]" where “[...]" is substituted with all feasible labels. Subsequently, we select the
label that yields the most probable caption.

The “loss-based classification" comes with significantly higher computation costs as all the different captions
have to be evaluated for each image (there representations is conditional to the image). For ImageNet, it
implies 1000 forwards through the decoder for each image. We thus employ the tree-based search for presenting
our findings in Table 3, although its greedy character with no backtracking is not optimal. Surprisingly, our
preliminary experiments suggest the tree-based search gives comparable results.
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Table 8 Compositional understanding (ARO): Results for CLIP (base) in Yuksekgonul et al. (2022) compared to our
evaluation.

ARO

Model ‘VGR VGA  COCO  Flickr

59% 63% 46% 60%
62.4% 62.9% 47.8%  58.0%

CLIP (eval from Yuksekgonul et al. (2022))
CLIP (our eval)

Table 9 Training from random initialization: Superiority of DP-Cap over ViP, both trained from random initialization.

ImageNet-1K
1-shot  2-shot  10-shot full

ViP (¢ = 8) 01%  17%  6.1%  23.9%
DP-Cap (¢ =8) | 56% 85%  188%  47.0%

Model

A.3.2 Details about ARO Evaluation

We adhered to the protocol and code base established in Yuksekgonul et al. (2022) for re-evaluating CLIP’s
performance, and we observe slightly different results (see Table 8). For our captioning models, our approach
involved computing the cross-entropy loss for all possible captions associated with each image and subsequently
selecting the one with the lowest loss.

A.3.3 Details about Linear Probing and Fine-tuning Evaluation.

Few-shot linear probing is accomplished using the Cyanure library (Mairal, 2019). We use the same hyper
parameters as in Assran et al. (2022). We adapted the MAE (He et al., 2022) code base for full linear probing,
and we use the same hyperparameters as in Yu et al. (2023) (extract 12 layers of the image encoder, LARS
optimizer (You et al., 2017) with base learning rate of 0.1, no weight decay and batch size of 16384).

B Additional Results

B.1 Additional experiments

Impact of the initialization (V). Our synthetic initialization for DP-Cap achieves less favorable results than the
one from ViP reaches 50% (Yu et al., 2023); for instance, for full linear probing on ImageNet, they achieve 44%
(Figure 2) and 50% respectively. However we have demonstrated that training with DP on top of synthetic
initialization leads to significantly better results for DP-Cap compared to ViP for all the metrics; see Table 2,
Table 10 and Figure 1. We observe that this superiority also appears when the models are trained from
random initialization: as shown in Table 9, the improvement over ViP is even larger when training without
synthetic initialization.

Fine-tuning (V). In Table 10, we present DP-Cap’s performance in fine-tuning for few-shot evaluation. In
contrast to the linear probing results shown in Table 2, the network is completely unfrozen. Therefore, we
assess DP-Cap’s capabilities primarily as a network initialization. Similarly to the linear probing results, we
note a significant improvement in all metrics compared to previous DP vision backbones. Note that, similarly
to linear probing comparison in Figure 1, we compare to non-private model performance which provides
information about the performance gap between private models and non-private models. For fair comparison,
we evaluate on the same same datasets than Yu et al. (2021).

Captioning task (V-L). We evaluate the image captioning performance of DP-Cap in comparison to non-private
Cap. In Fig. 1(c), we present some (randomly chosen) captions generated by DP-Cap; more examples for
DP-Cap and Cap can be found in Appendix B.3. Qualitatively, DP-Cap seems to generate reasonably good
captions, similar to the ones generated by Cap. We also compare the two models quantitatively using the
CIDEr metric (Vedantam et al., 2015) to evaluate the generated captions on the MS-COCO test set, and the
results are summarized in the last column of Table 3. As DP-Cap and Cap are only trained on noisy captions
from LAION, the CIDEr metric on MS-COCO is relatively low for both models. Moreover, despite the
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Table 10 Fine-tuning evaluation on few-shot downstream classification.

Model Aircraft Caltech-101 CIFAR-100
10-shot ~ 20-shot  30-shot | 5-shot  10-shot  30-shot | 5-shot  10-shot  30-shot
AlexNet | 23.3%  34.4%  414% | 64.7%  73.6%  81.4% | 29.7%  36.3% = 49.3%
SimCLR | 38.8%  56.9%  64.9% | 81.7%  89.1%  94.5% | 49.9%  602%  71.8%
TAN | 228%  37.9%  46.0% | 49.3%  66.4%  77.9% | 21.3%  27.8%  42.4%
ViP | 31.6%  53.1%  64.3% | 68.1%  79.0%  88.9% | 30.7%  41.0% = 57.5%

DP-Cap | 37.5%  57.9%  66.7% | 70.3%  81.3%  90.0% | 36.3%  46.3%  62.1%

Table 11 Ablation studies on the effect of model size for zero-shot prediction.

Zero-shot
)

Model Config 7 parameters  DP? | | Net-1k CIFARI0 CIFAR100
Random Chance - - - | 0.1% 10% 1%
Cap Base 86.6M X | 252% 90.0% 37.4%
DP-Cap Tiny 22.0M v 5.0% 46.5% 11.1%
DP-Cap Small 49.0M v 6.9% 53.6% 17.1%
DP-Cap Base 86.6M v 7.8% 54.4% 16.4%
DP-Cap Large 407.3M v 9.2% 62.1% 24.0%

Table 12 Captioning evaluation on the MS-COCO test set of Cap and DP-Cap. For “fine-tuned", the model’s decoder
is fine-tuned for one epoch on the MS-COCO train set (with the image encoder frozen).

CIDEr score

Model original  fine-tuned
Cap | 299 79.2
DP-Cap | 15.7 51.3

similar performance between DP-Cap and Cap on ARO, the gap is much more significant for the captioning
evaluation. Given these results, it is plausible that even though DP-Cap attains remarkably compositional
understanding capabilities, its ability to generate text is still limited.

We also fine-tune Cap and DP-Cap’s decoders (while freezing the encoder) for one epoch on the MS-
COCO train set, and assess the improvement in CIDEr scores in Table 12 to showcase the quality of the
image representations and decoder initialization from the pre-training stage. The captions in Figure 1 and
Appendix B.3 are generated using models that were not trained on MS-COCO.

What can we do with more compute budget? We restricted training the DP-Cap model for a compute budget of
32 epochs on the Dedup-LAION-233M dataset for each of our models with ¢ = 8. To fit the privacy budget
while utilizing a batch size of 1.3 million and training for 32 epochs, RDP analysis yields ¢ = 0.728. However,
we anticipate that further increasing the compute budget can yield even better models up to a certain limit:
With the same ¢ and batch size, doubling the compute to 64 epochs only necessitates a 12% increase in o.
This increase enables twice as many steps to be performed with only a marginal increase in effective noise,
potentially allowing the model to converge to a better solution.

In the absence of necessary compute for running this experiment, we partially validate this hypothesis through
the Total Amount of Noise (TAN) simulation, training for the same number of gradient steps and with the
same SNR per step, but using a x32 smaller batch size and x32 smaller ¢ to simulate at x32 lower compute.
Our results in Table 13 indicate a significant performance improvement of 5% in 10-shot accuracy on ImageNet
(compared to a similar simulation of the 32 epochs training). However, increasing the budget further to 128
epochs does not seem to enhance performance compared to the 64 epoch counterpart. Intuitively, the lower
gradient SNR and larger number of gradient steps have opposite effects on optimization, and pushing past
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Table 13 TAN simulation of the impact of the compute budget on the performance at fixed B.

o
0.81 0.95

Epochs 64 (x2) 128 (x4)
Effective noise o/B x1.12 x1.32
Predicted Final loss —0.2 —0.2
Predicted 10-shot ImageNet +5% +5%

&(N) for6=1/N

—e— B=1.3M, $=5708, 0=0.728
-=- £=8
104F LION (N=233M)

107 10°
N (Dataset Size)

Figure 5 At fixed (B, o, S), € drastically reduces with the dataset size.

the “sweet spot” of training for 64 epochs at o = 0.81 results in noisy steps that are unproductive for model
convergence. To surpass the performance of the 64-epoch, 1.3-million batch size DP-Cap model, training with
an even larger batch size appears necessary. We emphasize again that this result is derived through TAN
simulation, and actual, compute-intensive training is required to fully validate this assertion.

B.2 More on the Impact of dataset size and privacy parameters

Dataset size. We emphasize here (again) the importance of having enough training data to achieve a good
privacy-utility trade-off with DP-SGD. As depicted in Figure 5, increasing the number of training samples N
while keeping the same number of equivalent DP-SGD steps (i.e., keeping batch size B, noise o, and number
of update steps S constant) considerably reduces the privacy budget €. Equivalently, having more data allows
for an increase in the number of equivalent DP-SGD steps at fixed €. Similar observations were also made by
Tramer and Boneh (2020); McMahan et al. (2017). The abundance of pre-training data available for training
foundation models thus proves highly compatible with DP requirements.

Batch size and 0. We wish to underscore the influence of batch size and ¢ on both the computational budget
and model performance. As highlighted in Section 3.2, for a given target ¢, elevating o beyond 0.5 allows
training for significantly more steps. In Figure 6, the blue, orange and green lines show the batch size (B)
vs. compute trade-off (E) at a given o. The lines are monotonically decreasing with B, signifying that the
number of epochs F decreases when increasing B. When maintaining a fixed privacy budget € = 8, even a
marginal increase in o from 0.48 to 0.728 (from blue to orange) translates to a remarkable increase ranging
from 100 (for small batch sizes) to 100,000 (for very large batch sizes) times more gradient steps. Thus it is
favorable to increase o and B at the same time for better model convergence.

Meanwhile, doing so also incurs a higher computational cost: Under a 32-epoch budget on Dedup-LAION-233M
with a batch size of 1.3 million, we had to cut the red curve in Figure 6, with ¢ = 0.728. As outlined in
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Figure 6 All points correspond to ¢ = 8 for a dataset of size N = 233M. At fixed € and o, the number of epochs
decreases as the batch size increases.

Section 4.4, with twice this budget, we could have raised o to 0.81 (green curve), with simulations indicating
that this would have substantially improved performance. Additionally, Section 3.2 underscores that increasing
the batch size is pivotal for achieving a high SNR while maintaining reasonable privacy guarantees. It is also
crucial to note that at fixed e, the compute budget is inversely proportional to the batch size. Therefore,
increasing the batch size is beneficial for both SNR and computational efficiency. However, an excessively
large batch size leads to fewer epochs and consequently a very limited number of training steps, which is
detrimental to the training process (in addition to the difficulties of large batch training). For optimal
privacy-utility-compute trade-off, a balance must be struck between computational resources, feasible batch
size, and a reasonable number of training steps.

B.3 Image Caption Examples

In Figures 7 and 8, we show images from the MS-COCO 2017 test set and their corresponding captions
generated by human annotator, Cap, and DP-Cap. Images in Figure 7 are selected randomly, whereas images
in Figure 8 are randomly selected from the top 10% CIDEr score examples for DP-Cap. Qualitatively, the
human-generated captions are more precise, whereas the captions generated by Cap and DP-Cap are more
generic and sometimes contain factual errors. This is to be expected since Cap and DP-Cap are trained on
LAION with much noisier text description and were not fine-tuned on MS-COCO. Nevertheless, DP-Cap still
generates grammatically correct and (mostly) semantically coherent captions for unseen images.
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True: A brown vase has four black horses on it. True: a pack of elephants grazing in a dirt enclosed space True: A pastry is torn in half on a plate.

DP-CAP: vintage japanese hand painted lacquer box DP-CAP: elephants are seen in the z0o in the city of london, england, on july 1, 2020. DP-CAP: how to make a cake with a cake mix
CAP: baked potato with cheese and honey

' -
\

CAP: a greek vase depicting the battle of hastings, . CAP: parkille, victoria - australia'melbourne zoo - d
= _ o

g™

True: a bunch of orange cones sitting in the road
True: a bunch of zebras out in a grassy field DP-CAP: the new york city fire department's fire department responded to a fire at the scene of a fi True: A cat is on a desk looking at the computer screens.
DP-CAP: zebras grazing in the field re at the scene of a fire at the intersection of broadway and broadway in new york on tuesday DP-CAP: how to make a home theater
CAP: zebras and wildebeests grazing in the serengeti n CAP: construction continues on the new downtown east s CAP: cat sitting at desk with computer
| N

True: Bathroom with orange shower and mirror/cabinet curtains True: two stuffed animals posed together in black and white True: A plate of food sitting on a table, it appears to be a salad.
DP-CAP: how to make a shower curtain DP-CAP: """ """ jloveyou " """ --uvemnnene e DP-CAP: grilled chicken with cilantro lime dressing
CAP: how to make a shower curtain CAP: stuffed animals CAP: roasted broccoli and lentils with black rice and

Figure 7 Captions of randomly selected images from the MS-COCO 2017 test set.
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True: a bird feeder that is attached to a tree True: A living room with a white sofa and a gray rug. True: A dog is running on the beach sand.
DP-CAP: a small bird feeder made from a plastic bottle DP-CAP: living room with a large sofa and a coffee table. DP-CAP: white horse running on the beach
CAP: how to attract birds to your yard CAP: living room with carpet, hardwood floors, and a d CAP: white dog running on the beach

True: White swans swimming in a harbor with docked boats. True: Two large brown elephants walking in a grassy field. True: A tan dog eating food scraps from a plate.
DP-CAP: swans swimming in the water DP-CAP: a herd of elephants walking in the grass DP-CAP: dog eating food
CAP: swans swimming in the harbor CAP: elephants walking in the park CAP: dog eating

True: A seagull standing near the ocean on the sand. True: A polar bear swimming underwater, approaching some rocks. True: a cat wearing a hat on its head
DP-CAP: seagull standing on the beach DP-CAP: a polar bear swimming in the water DP-CAP: cat wearing a pink hat
CAP: seagull standing on the beach CAP: swimming polar bear CAP: cat wearing pink hat

Figure 8 Captions of images (randomly picked among the top 10% CIDEr score of DP-Cap) from the MS-COCO 2017
test set.
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